Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate.

نویسندگان

  • C B Coyne
  • M M Kelly
  • R C Boucher
  • L G Johnson
چکیده

The airway epithelium is resistant to infection by gene transfer vectors when infected from the luminal surface. One strategy for enhancing airway epithelial gene transfer is to modify paracellular permeability, thereby permitting the diffusion of vectors to the basolateral surface, where uptake receptors are expressed. We investigated the ability of a medium-chain fatty acid known to enhance drug absorption, sodium caprate (C10), to increase airway paracellular permeability in comparison with ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Apical application of C10 decreased transepithelial resistance by > 90% within minutes, whereas EGTA required an hour or more to produce a similar effect. C10 increased mannitol and dextran permeability by sevenfold, as compared with a twofold increase produced by EGTA. A greater enhancement of adenoviral lacZ gene transfer was mediated by C10 (50-fold over controls) than by EGTA (10-fold over controls). This correlated with a significant enhancement of adenoviral CFTR-mediated correction of Cl(-) transport in polarized human airway epithelial (HAE) cells from cystic fibrosis (CF) patients. Confocal microscopy revealed a redistribution of claudin-1 following C10 but not EGTA treatment as a possible mechanism of gene-transfer enhancement by C10. These data suggest that C10 may be a better agent for enhancing gene transfer than is EGTA, and that this effect occurs through disruption of claudin-1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFLAMMATION AND INFLAMMATORY BOWEL DISEASE Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease

Background: Crohn’s disease is associated with deranged intestinal permeability in vivo, suggesting dysfunction of tight junctions. The luminal contents are important for development of neoinflammation following resection. Regulation of tight junctions by luminal factors has not previously been studied in Crohn’s disease. Aims: The aim of the study was to investigate the effects of a luminal st...

متن کامل

A role for tricellulin in the regulation of gill epithelium permeability.

The apical-most region of cell-to-cell contact in a vertebrate epithelium is the tight junction (TJ) complex. It is composed of bicellular TJs (bTJs) that bridge two adjacent epithelial cells and tricellular TJs (tTJs) that are points of contact between three adjoining epithelial cells. Tricellulin (TRIC) is a transmembrane TJ protein of vertebrates that is found in the tTJ complex. Full-length...

متن کامل

Specific modulation of airway epithelial tight junctions by apical application of an occludin peptide.

Tight junctions are directly involved in regulating the passage of ions and macromolecules (gate functions) in epithelial and endothelial cells. The modulation of these gate functions to transiently regulate the paracellular permeability of large solutes and ions could increase the delivery of pharmacological agents or gene transfer vectors. To reduce the inflammatory responses caused by tight ...

متن کامل

Trends in drug delivery through tissue barriers containing tight junctions

A limitation in the uptake of many drugs is the restricted permeation through tissue barriers. There are two general ways to cross barriers formed by cell layers: by transcytosis or by diffusion through the intercellular space. In the latter, tight junctions (TJs) play the decisive role in the regulation of the barrier permeability. Thus, transient modulation of TJs is a potent strategy to impr...

متن کامل

Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers.

Despite significant advances in the characterization of tight junction (TJ) proteins, little is known about how molecular changes relate to function due primarily to the limitations of conventional paracellular probes. To address this, the paracellular pathway in Caco-2 and T84 cell lines was profiled by measuring the permeabilities of 24 polyethylene glycols (PEG) of increasing molecular radiu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2000